Dynamical properties of non-Markovian stochastic differential equations
نویسنده
چکیده
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an Ornstein-Uhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
منابع مشابه
Stability of Invariant Sets of Itô Stochastic Differential Equationswith Markovian Switching
Invariant sets of dynamic systems play an important role in many situations when the dynamic behavior is constrained in some way. Knowing that a set in the state space of a system is invariant means that we have bounds on the behavior. We can verify that pre-specified bounds which originate from, for example, safety restrictions, physical constraints, or state-feedback magnitude bounds are not ...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملStochastic modelling of nonlinear dynamical systems
We develop a general theory dealing with stochastic models for dynamical systems that are governed by various nonlinear, ordinary or partial differential, equations. In particular, we address the problem how flows in the random medium (related to driving velocity fields which are generically bound to obey suitable local conservation laws) can be reconciled with the notion of dispersion due to a...
متن کاملStochastic Functional Differential Equations with Markovian Switching
The main aim of this paper is to investigate the exponential stability of stochastic functional differential equations with Markovian switching. The Razumikhin argument and the generalized Itô formula will play their important roles in this paper. Applying our new results to several important types of equations e.g. stochastic differential delay equations and stochastic differential equations, ...
متن کامل